Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal--leukocyte interaction.
نویسنده
چکیده
Since oxygen-free polymorphonuclear neutrophils (PMN) cannot kill Staphylococcus aureus normally, the usual mechanisms for PMN bactericidal activity probably involve hydrogen peroxide or superoxide. Catalase can destroy hydrogen peroxide, and superoxide dismutase breaks down superoxide. Experiments were performed to study the influence of these enzymes (which are found in staphylococci) on virulence for mice or on leukocyte-bacterial interaction. 15 staphylococcal strains were injected i.p. into mice to quantitate virulence. There was good correlation between staphylococcal catalase activity and mouse lethality (r equals 0.88) but no correlation between staphylococcal superoxide dismutase activity and mouse lethality (r equals 0.14). Exogenous catalase (10,000 U/ml) increased the virulence of low-catalase staphylococci, but exogenous superoxide dismutase (200 mug/ml) did not alter the virulence of staphyloccal strains. C14=labeled high-catalase or low-catalase staphylococci were ingested equally well by PMN, with or without the addition of exogenous catalase. A high-catalase staphylococcal strain was killed relatively poorly by PMN, and addition of exogenous catalase (but not superoxide dismutase) decreased the ability of PMN to kill a low-catalase strain. Iodination of bacterial proteins by PMN is related to hydrogen peroxide, and a high-catalase staphylococcal strain was iodinated only 63% as much as a low-catalase strain. Addition of exogenous catalase decreased iodination of the low-catalase strain by 23%. These findings suggest that staphylococcal catalase protects intraphagocytic microbes by destroying hydrogen peroxide produced by the phagocyte. Thus, catalase may be a significant staphylococcal virulence factor.
منابع مشابه
Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system.
An antimicrobial system has been previously described in the polymorphonuclear leukocyte which consists of myeloperoxidase, H202, and a halide. In the present study, H202 is replaced by xanthine and xanthine oxidase in the isolated myeloperoxidase-mediated antimicrobial system and the contribution of the superoxide anion (02T) and hydroxyl radicals (*OH) to the antimicrobial effect investigated...
متن کاملAntioxidant potential and hepatoprotectivity of hydromethanolic extract of Litchi chinensis fruits: In vivo and in vitro studies
The antioxidant activity and phytoconstituents of the hydromethanolic extract of Litchi chinensis (HELC) fruit was explored in the present study. The antioxidant potential of extract has been evaluated using several antioxidant models and results were compared to standards. Fruit extract showed effective reducing power and free radical scavenging activity in a dose-dependent manner. In case o...
متن کاملCatalase and superoxide dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates.
Catalase and superoxide dismutase (SOD) activities of virulent and nonvirulent isolates of Staphylococcus aureus were compared. The mean value of catalase activity for intact cell suspensions was 2,773 +/- 1,049 Kat f units (Kat f is defined as the ratio of the velocity constant of catalase at 0 min to the protein content in grams per milliliter); that of nonvirulent isolates was 154 +/- 92 Kat...
متن کاملIn-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus
Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...
متن کاملIn-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus
Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 55 3 شماره
صفحات -
تاریخ انتشار 1975